Neue Vorlesungen zu KI und IT-Sicherheit im Wintersemester
- News
- Studium

Durch den Dienstantritt von fünf Kolleg*innen hat die die Fakultät für Informatik ordentlich Zuwachs erhalten, der sich auch im Lehrprogramm der Fakultät widerspiegelt. Durch die Einführung des Masterstudiengangs Wirtschaftsinformatik gibt es weitere Änderungen.
Im Folgenden listen wir Ihnen alphabetisch alle neuen Veranstaltungen des Wintersemesters auf und aktualisieren diese Liste u.U. bis Vorlesungbeginn.
Advanced Enterprise Computing: Management von KI (Prof. Janiesch) - INF-MSc-528
MSc (A)Inf Vertiefung, MSc AInf AF EC/ MSc WI Pflicht
Das Modul behandelt fortgeschrittene, aber grundlegende sozio-technische Themen der Wirtschaftsinformatik. Es wird zunächst eine Schwerpunktsetzung im Bereich Management künstlicher Intelligenz erfolgen mit Themen wie: Grundlagen der Künstlichen Intelligenz, einschließlich ihrer Technologien und Anwendungen, Algorithmic Management, AI Agency und Mensch-KI-Interaktion, Ethische Überlegungen und rechtliche Rahmenbedingungen, AI Risk Management, AI Governance, MLOps. Studierenden erlangen theoretische und praktische Kenntnisse im Bereich Management von künstlicher Intelligenz und können diese in Bezug auf betriebliche Fragestellungen analysieren und beurteilen und Lösungsstrategien für archetypische Herausforderungen entwickeln. Die Vorlesung wird von begleitenden im Seminarcharakter durchgeführten Übungen begleitet. Mehr Informationen gibt es hier.
AI for Medical Applications (Prof. Kamp)
MSc (A)Inf/WI Vertiefung
This module introduces core artificial intelligence methods for medical data analysis. It covers machine learning fundamentals, deep learning for medical imaging, natural language processing (including large language models), generative AI, time-series analysis, and emerging agent-based approaches. Students work hands-on with real medical datasets and GPU-based platforms to implement and evaluate algorithms. After completing the course, participants will understand key AI techniques, know how to handle various types of medical data, and be able to apply and further explore advanced AI methods in the medical domain. The course will be delivered in English.
Human-AI Interaction (Prof. Mayer)
BSc (A)Inf/WI Fachprojekt
Dieser Projektkurs für Studierende führt in das interdisziplinäre Gebiet der Mensch-KI-Interaktion ein, in dem intelligente Systeme aus einer auf den Menschen bezogenen Perspektive entworfen und bewertet werden. Der Kurs konzentriert sich auf die Anwendung grundlegender Konzepte der Mensch-Computer-Interaktion (HCI) und der Künstlichen Intelligenz (KI) auf die Entwicklung neuartiger, interaktiver Systeme.
Hyperparameter Optimization (JProf. Feurer)
MSc (A)Inf/WI Seminar
Hyperparameter optimization is an important step in the development of machine learning solutions and can change the performance of a model from mediocre to stellar. In this seminar, we will discuss the foundations of hyperparameter optimization: hyperparameter optimization algorithms. We will also discuss the properties of hyperparameter optimization problems and the impact of hyperparameter optimization in large-scale machine learning benchmarks. The following papers are samples of the seminar content:
- syftr: Pareto-Optimal Generative AI
- HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection
- HEBO: Pushing The Limits of Sample-Efficient Hyper-parameter Optimisation
- Scaling Laws for Hyperparameter Optimization
The goal of the seminar is to understand fundamental algorithms in hyperparameter optimization, how to compare them, know about recent trends, and be able to understand the survey papers of Bischl et al. (2023) and Feurer and Hutter (2019). Every participant will be assigned one research paper. Every student will give a presentation and write a short report about their topic. In addition, every student will read the papers presented by fellow students and participate in a discussion about the methods, and merits and flaws of the respective papers. Details are subject to change and will be given in a kick-off session in the first week of the semester. Also, the exact details will depend on the number of participants. The course will be delivered in English. Room, day and time: Joseph-von-Frauenhofer-Str. 25 Conference Room 3-303, Tuesday mornings, 10-12, Kickoff meeting: 14.10, 10:00h. Please contact Prof. Feurer in advance.
Intelligent User Interfaces (Prof. Mayer)
MSc (A)Inf/WI Vertiefung
Das Modul "Intelligente Benutzeroberflächen (IUI)" behandelt aktuelle Themen an der Schnittstelle von Mensch-Computer-Interaktion und maschinellem Lernen. Im Mittelpunkt steht die Übertragung und Anpassung von Verfahren aus dem Bereich des maschinellen Lernens und der künstlichen Intelligenz auf praktische Fragestellungen der interaktiven Systemgestaltung, stets unter Berücksichtigung einer mensch-zentrierten Perspektive. Behandelte Themen umfassen unter anderem: Grundlagen von künstlicher Intelligenz und maschinellem Lernen (inkl. Python-Implementierungen), Sprachbasierte Benutzungsschnittstellen (Voice User Interfaces), Textverarbeitung und natürliche Sprachverarbeitung (Natural Language Processing), Kontext- und umgebungsbewusste Interaktion in intelligenten Systemen, Intelligente Texteingabesysteme und optimierte Tastaturlayouts, Empfehlungsdienste (Recommender System) und deren Evaluation, Erklärbarkeit und Transparenz intelligenter Systeme (Explainable AI), Usable Security, Mensch-Maschine-Sicherheit und vertrauenswürdige KI (Trustworthy AI), Einführung in die Mensch-Roboter-Interaktion.
Mobile Security (Prof. Rossow)
MSc (A)Inf/WI Vertiefung
This lecture deals with various fundamental aspects of mobile operating systems and application security, with a focus on the popular open-source operating system Android. In general, it aims to increase students' awareness and understanding of security and privacy issues in this area. Students learn to address current security and privacy issues in smartphones from the perspective of the various players in the smartphone ecosystem: end users, app developers, system developers, and third parties. The course will be delivered in English. More information here.
Software Security (Prof. Rossow) - INF-MSc-338
MSc (A)Inf/WI Vertiefung
This course introduces and discusses important theoretical and practical aspects of software security. One focus is on various attack and defense techniques. Specifically, important attack methods (e.g., buffer overflows, race conditions, use-after-free, heap overflows, etc.) and defense strategies (e.g., non-executable memory, address space layout randomization, memory tagging, etc.) are discussed. Other topics covered in the lecture include methods for software analysis and testing, such as fuzzing, symbolic execution, and reverse engineering. The course will be delivered in English. More information here.
Tabular Machine Learning (Prof. Eggensperger)
MSc (A)Inf/WI Seminar
Abstract. Tabular data is everywhere and often at the core of data science tasks, from healthcare to e-commerce and the natural sciences. Yet it comes with unique challenges and research questions for machine learning: What makes tabular data different from text or images? Which models work best, and why is it hard to beat simple baselines? How do recent advances in large and pre-trained models reshape the field? What is the role of LLMs in the field of tabular tasks? In this seminar, we will explore the evolving landscape of ML for tabular data, with a special focus on predictive tasks and the rise of foundation models. We will read and discuss recent research papers and critically examine approaches. The course will be delivered in English. For more info, see https://keggensperger.github.io/teaching/2025-winter-seminar
Theoretical Foundations of Machine Learning (Prof. Kamp)
MSc (A)Inf/WI Vertiefung
This module introduces the theoretical foundations of machine learning, with a focus on learning theory and its role in understanding the performance of learning algorithms. Students will learn how to formally analyze the generalization ability of models, understand the role of hypothesis spaces, and derive guarantees on learning performance. The course covers both classical learning theory and modern theoretical approaches that have emerged in response to the success of deep learning, where many classical assumptions break down. We will critically examine where traditional tools such as uniform convergence and VC-dimension fall short, and explore recent perspectives that aim to explain the generalization behavior of highly overparameterized models. The course will be delivered in English.